EconPapers    
Economics at your fingertips  
 

Probabilistic branch and bound considering stochastic constraints

Hao Huang, Shing Chih Tsai and Chuljin Park

European Journal of Operational Research, 2025, vol. 321, issue 1, 147-159

Abstract: In this paper, we investigate a simulation optimization problem that poses challenges due to (i) the inability to evaluate the objective and multiple constraint functions analytically; instead, we rely on stochastic simulation to estimate them, and (ii) a discrete and potentially vast solution space. Rather than providing a single optimal solution, our aim is to identify a set of near-optimal solutions within a specific quantile, such as the top 10%. Our investigation covers two different problem settings or frameworks. The first framework is focused solely on a stochastic objective function, disregarding any stochastic constraints. In this context, we propose employing a probabilistic branch-and-bound algorithm to discover a level set of solutions. Alternatively, the second framework involves stochastic constraints. To address such stochastically constrained problems, we utilize a penalty function methodology in conjunction with a probabilistic branch-and-bound algorithm. Furthermore, we establish a convergence analysis of both algorithms to demonstrate their asymptotic validity and highlight their theoretical properties and behavior. Our experimental results provide evidence of the efficiency of our proposed algorithms, showing that they outperform existing approaches in the field of simulation optimization.

Keywords: Simulation; Adaptive random search; Branch and bound; Penalty function; Stochastic constraints (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221724007197
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:321:y:2025:i:1:p:147-159

DOI: 10.1016/j.ejor.2024.09.016

Access Statistics for this article

European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati

More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ejores:v:321:y:2025:i:1:p:147-159