Data-driven dynamic police patrolling: An efficient Monte Carlo tree search
Daniel Tschernutter and
Stefan Feuerriegel
European Journal of Operational Research, 2025, vol. 321, issue 1, 177-191
Abstract:
Crime is responsible for major financial losses and serious harm to the well-being of individuals, and, hence, a crucial task of police operations is effective patrolling. Yet, in existing decision models aimed at police operations, microscopic routing decisions from patrolling are not considered, and, furthermore, the objective is limited to surrogate metrics (e.g., response time) instead of crime prevention. In this paper, we thus formalize the decision problem of dynamic police patrolling as a Markov decision process that models microscopic routing decisions, so that the expected number of prevented crimes are maximized. We experimentally show that standard solution approaches for our decision problem are not scalable to real-world settings. As a remedy, we present a tailored and highly efficient Monte Carlo tree search algorithm. We then demonstrate our algorithm numerically using real-world crime data from Chicago and show that the decision-making by our algorithm offers significant improvements for crime prevention over patrolling tactics from current practice. Informed by our results, we finally discuss implications for improving the patrolling tactics in police operations.
Keywords: Markov processes; Police operations; Patrolling; Vehicle routing problem; Monte Carlo tree search (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221724007227
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:321:y:2025:i:1:p:177-191
DOI: 10.1016/j.ejor.2024.09.019
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().