Partially adaptive multistage stochastic programming
Sezen Ece Kayacık,
Beste Basciftci,
Albert H. Schrotenboer and
Evrim Ursavas
European Journal of Operational Research, 2025, vol. 321, issue 1, 192-207
Abstract:
Multistage stochastic programming is a powerful tool allowing decision-makers to revise their decisions at each stage based on the realized uncertainty. However, organizations are not able to be fully flexible, as decisions cannot be revised too frequently in practice. Consequently, decision commitment becomes crucial to ensure that initially made decisions remain unchanged for a certain period of time. This paper introduces partially adaptive multistage stochastic programming, a new optimization paradigm that strikes an optimal balance between decision flexibility and commitment by determining the best stages to revise decisions depending on the allowed level of flexibility. We introduce a novel mathematical formulation and theoretical properties eliminating certain constraint sets. Furthermore, we develop a decomposition method that effectively handles mixed-integer partially adaptive multistage programs by adapting the integer L-shaped method and Benders decomposition. Computational experiments on stochastic lot-sizing and generation expansion planning problems show substantial advantages attained through optimal selections of revision times when flexibility is limited, while demonstrating computational efficiency attained by employing the proposed properties and solution methodology. By adhering to these optimal revision times, organizations can achieve performance levels comparable to fully flexible settings.
Keywords: Stochastic programming; Multistage stochastic optimization; Mixed-integer programming; Lot-sizing; Generation expansion planning (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221724007379
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:321:y:2025:i:1:p:192-207
DOI: 10.1016/j.ejor.2024.09.034
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().