Industry return prediction via interpretable deep learning
Lazaros Zografopoulos,
Maria Chiara Iannino,
Ioannis Psaradellis and
Georgios Sermpinis
European Journal of Operational Research, 2025, vol. 321, issue 1, 257-268
Abstract:
We apply an interpretable machine learning model, the LassoNet, to forecast and trade U.S. industry portfolio returns. The model combines a regularization mechanism with a neural network architecture. A cooperative game-theoretic algorithm is also applied to interpret our findings. The latter hierarchizes the covariates based on their contribution to the overall model performance. Our findings reveal that the LassoNet outperforms various linear and nonlinear benchmarks concerning out-of-sample forecasting accuracy and provides economically meaningful and profitable predictions. Valuation ratios are the most crucial covariates, followed by individual and cross-industry lagged returns. The constructed industry ETF portfolios attain positive Sharpe ratios and positive and statistically significant alphas, surviving even transaction costs.
Keywords: Finance; Forecasting; Machine learning; Deep learning; Feature importance (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221724006878
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:321:y:2025:i:1:p:257-268
DOI: 10.1016/j.ejor.2024.08.032
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().