EconPapers    
Economics at your fingertips  
 

A tight formulation for the dial-a-ride problem

Daniela Gaul, Kathrin Klamroth, Christian Pfeiffer, Michael Stiglmayr and Arne Schulz

European Journal of Operational Research, 2025, vol. 321, issue 2, 363-382

Abstract: Ridepooling services play an increasingly important role in modern transportation systems. With soaring demand and growing fleet sizes, the underlying route planning problems become increasingly challenging. In this context, we consider the dial-a-ride problem (DARP): Given a set of transportation requests with pick-up and delivery locations, passenger numbers, time windows, and maximum ride times, an optimal routing for a fleet of vehicles, including an optimized passenger assignment, needs to be determined. We present tight mixed-integer linear programming (MILP) formulations for the DARP by combining two state-of-the-art models into novel location-augmented-event-based formulations. Strong valid inequalities and lower and upper bounding techniques are derived to further improve the formulations. We then demonstrate the theoretical and computational superiority of the new models: First, the linear programming relaxations of the new formulations are stronger than existing location-based approaches. Second, extensive numerical experiments on benchmark instances show that computational times are on average reduced by 53.9% compared to state-of-the-art event-based approaches.

Keywords: Routing; Transportation; Dial-a-ride problem; Mixed-integer linear programming; Valid inequalities (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221724007318
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:321:y:2025:i:2:p:363-382

DOI: 10.1016/j.ejor.2024.09.028

Access Statistics for this article

European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati

More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ejores:v:321:y:2025:i:2:p:363-382