Optimal capacity planning for cloud service providers with periodic, time-varying demand
Eugene Furman and
Adam Diamant
European Journal of Operational Research, 2025, vol. 322, issue 1, 133-146
Abstract:
Allocating capacity to private cloud computing services is challenging because demand is time-varying, there are often no buffers, and customers can re-submit jobs a finite number of times. We model this setting using a multi-station queueing network where servers represent CPU cores and jobs not immediately processed retry several times. Assuming retrial rates are stationary and that there is a maximum number of retrial attempts, we determine an optimal service capacity and retrial interval under an admission control policy employed by our partner institution — the server informs customers when they should next attempt service without enforcement. We introduce a recursive representation of the offered load which approximates the fluid dynamics of the system. We then use this representation to develop a solution technique that minimizes the total variation in the constructed offered load. We prove this approach is linked to maximizing system throughput and that in certain settings, the optimal stationary and time-varying retrial intervals are equivalent. Utilizing a data set of cloud computing requests spanning a 24-hour period, our analysis indicates that the optimal policy prescribes a 10% reduction in capacity. We also investigate the fidelity of the fluid model and the sensitivity of our recommendations to the behavior of retrial jobs. We find that retrial-time announcements allow a provider to satisfy service level agreements while encouraging retrial jobs to be processed during off-peak periods. Further, the policy is suitably robust to a customer’s willingness to comply with the suggested retrial times.
Keywords: Queueing; Cloud computing; Retrials; Fluid dynamics; Offered load analysis (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221724008865
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:322:y:2025:i:1:p:133-146
DOI: 10.1016/j.ejor.2024.11.017
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().