Risk-averse algorithmic support and inventory management
Pranadharthiharan Narayanan,
Jeeva Somasundaram and
Matthias Seifert
European Journal of Operational Research, 2025, vol. 322, issue 3, 993-1004
Abstract:
We study how managers allocate resources in response to algorithmic recommendations that are programmed with specific levels of risk aversion. Using the anchoring and adjustment heuristic, we derive our predictions and test them in a series of multi-item newsvendor experiments. We find that highly risk-averse algorithmic recommendations have a strong and persistent influence on order decisions, even after the recommendations are no longer available. Furthermore, we show that these effects are similar regardless of factors such as source of advice (i.e., human vs. algorithm) and decision autonomy (i.e., whether the algorithm is externally assigned or chosen by the subjects themselves). Finally, we disentangle the effect of risk attitude from that of anchor distance and find that subjects selectively adjust their order decisions by relying more on algorithmic advice that contrasts with their inherent risk preferences. Our findings suggest that organizations can strategically utilize risk-averse algorithmic tools to improve inventory decisions while preserving managerial autonomy.
Keywords: decision analysis; Algorithm; Risk aversion; Decision support systems; Anchoring (search for similar items in EconPapers)
JEL-codes: D81 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221724008634
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:322:y:2025:i:3:p:993-1004
DOI: 10.1016/j.ejor.2024.11.013
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().