Deep Controlled Learning for Inventory Control
Tarkan Temizöz,
Christina Imdahl,
Remco Dijkman,
Douniel Lamghari-Idrissi and
Willem van Jaarsveld
European Journal of Operational Research, 2025, vol. 324, issue 1, 104-117
Abstract:
The application of Deep Reinforcement Learning (DRL) to inventory management is an emerging field. However, traditional DRL algorithms, originally developed for diverse domains such as game-playing and robotics, may not be well-suited for the specific challenges posed by inventory management. Consequently, these algorithms often fail to outperform established heuristics; for instance, no existing DRL approach consistently surpasses the capped base-stock policy in lost sales inventory control. This highlights a critical gap in the practical application of DRL to inventory management: the highly stochastic nature of inventory problems requires tailored solutions. In response, we propose Deep Controlled Learning (DCL), a new DRL algorithm designed for highly stochastic problems. DCL is based on approximate policy iteration and incorporates an efficient simulation mechanism, combining Sequential Halving with Common Random Numbers. Our numerical studies demonstrate that DCL consistently outperforms state-of-the-art heuristics and DRL algorithms across various inventory settings, including lost sales, perishable inventory systems, and inventory systems with random lead times. DCL achieves lower average costs in all test cases while maintaining an optimality gap of no more than 0.2%. Remarkably, this performance is achieved using the same hyperparameter set across all experiments, underscoring the robustness and generalizability of our approach. These findings contribute to the ongoing exploration of tailored DRL algorithms for inventory management, providing a foundation for further research and practical application in this area.
Keywords: Inventory; Deep reinforcement learning; Lost sales (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221725000463
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:324:y:2025:i:1:p:104-117
DOI: 10.1016/j.ejor.2025.01.026
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().