EconPapers    
Economics at your fingertips  
 

Anticipating delays in recruitment: Explainable machine learning for the prediction of hard-to-fill online job vacancies

Wouter Dossche, Sarah Vansteenkiste, Bart Baesens and Wilfried Lemahieu

European Journal of Operational Research, 2026, vol. 328, issue 2, 680-693

Abstract: Online job vacancy (OJV) platforms have transformed the labor market by enabling employers to advertise jobs to a wide audience. Particularly in tight labor markets, quickly identifying vacancies likely to suffer prolonged durations is crucial. This study utilizes data from the Flemish public employment service's OJV platform to examine the effectiveness of machine learning in predicting hard-to-fill vacancies. We achieve notable predictive performance with XGBoost in forecasting recruitment delays and demonstrate the importance of capturing non-linear patterns in OJV data. SHAP (SHapley Additive exPlanations) values reveal that the textual content of vacancies and latent company characteristics are key predictors of hiring delays. Counterfactual-SHAP insights provide practical guidance for refining recruitment strategies, enhancing labor market forecasts, and informing targeted policies.

Keywords: Analytics; Decision support systems; Online job vacancies; Machine learning; Natural language processing (search for similar items in EconPapers)
Date: 2026
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221725004990
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:328:y:2026:i:2:p:680-693

DOI: 10.1016/j.ejor.2025.06.027

Access Statistics for this article

European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati

More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-10-07
Handle: RePEc:eee:ejores:v:328:y:2026:i:2:p:680-693