EconPapers    
Economics at your fingertips  
 

A method for the automated configuration of anytime portfolios of algorithms

Elias Schede and Kevin Tierney

European Journal of Operational Research, 2026, vol. 329, issue 2, 577-590

Abstract: Optimization algorithms contain parameters that greatly influence their behavior, such that finding good parameters with automated algorithm configuration tools has become a critical component in the algorithm design process. Many optimization algorithms possess the anytime property, meaning they can be stopped at any time during their execution and provide a feasible solution. Setting the parameters of anytime algorithms is difficult, as the parameters ought to provide robust performance across varying execution times. Traditional algorithm configuration methods address this challenge by finding a one-size-fits-all parameter configuration, however finding a portfolio of configurations, each targeted to a different runtime, can lead to better overall performance. We introduce a novel algorithm configuration method for configuring anytime algorithms that produces viable configuration portfolios that assign different configurations to different runtimes. Our proposed method harnesses an early termination mechanism for unpromising configurations using a cost-sensitive machine learning approach. Furthermore, it uses two novel MIP formulations to discard configurations and to create the configuration portfolio, respectively.

Keywords: Evolutionary computations; Machine learning; Integer programming; Combinatorial optimization (search for similar items in EconPapers)
Date: 2026
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221725005491
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:329:y:2026:i:2:p:577-590

DOI: 10.1016/j.ejor.2025.07.024

Access Statistics for this article

European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati

More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-11-18
Handle: RePEc:eee:ejores:v:329:y:2026:i:2:p:577-590