EconPapers    
Economics at your fingertips  
 

Development and performance assessment of a parabolic trough solar collector-based integrated system for an ice-cream factory

Onder Kizilkan, Ahmet Kabul and Ibrahim Dincer

Energy, 2016, vol. 100, issue C, 167-176

Abstract: In this paper, a new solar-based renewable energy system integrated with PTSCs (parabolic trough solar collectors) is proposed, designed and analyzed for an ice-cream factory located in Isparta, Turkey. The present system includes a PTSC system to meet the heat energy demand for both heating the ice-cream mixture and cooling it down by means of an absorption refrigeration system. Comprehensive energy and exergy analyses of the system are carried out for determining the performance characteristics of the actual and the proposed processes. Instead of conventional energy resources, establishment of this kind of energy systems provides better operating conditions energetically, exergetically, economically, environmentally and hence sustainably. The results show that the energy consumption of the actual system is 85.81 kWh per day, while the energy consumption of the proposed system is calculated to be 1.235 kWh which leads to an energy saving of 98.56%.

Keywords: Solar energy; Exergy; Efficiency; Parabolic trough solar collector; Ice-cream production (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544216300354
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:100:y:2016:i:c:p:167-176

DOI: 10.1016/j.energy.2016.01.098

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:100:y:2016:i:c:p:167-176