EconPapers    
Economics at your fingertips  
 

Review article: Numerical simulation of adsorption heat pumps

Alireza Pesaran, Hoseong Lee, Yunho Hwang, Reinhard Radermacher and Ho-Hwan Chun

Energy, 2016, vol. 100, issue C, 310-320

Abstract: The primary advantages of the AHP (adsorption heat pump) including using environmentally friendly working fluids and their capability of using low-grade waste heat as their primary driving energy have raised a great deal of attention in recent years. In this work, computer models of AHPs and the latest relevant findings are reviewed since the performance of an AHP system greatly depends on the coupled heat and mass transfer rates inside the adsorbent bed and the design parameters of the adsorber. The nonlinearity of the coupled heat and mass transfer equations makes the qualitative analysis of such systems difficult and hence many researchers have proposed various models to predict the performance of the system and optimize the design parameters to boost the performance. The available models in the literature have been categorized into thermodynamic models, lumped-parameter models, and distributed-parameter (heat and mass transfer) models. The results of the literature review indicate that recent numerical modeling of AHPs relies on the distributed-parameter models. Majority of the modeling works are focused on validating the proposed model and used the model to optimize the adsorber design parameters and operating conditions of the system. Based on the literature review, some potential future research areas are suggested.

Keywords: Numerical simulation; Adsorption heat pump; Distributed-parameter models; Coupled heat and mass transfer (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544216300408
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:100:y:2016:i:c:p:310-320

DOI: 10.1016/j.energy.2016.01.103

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:100:y:2016:i:c:p:310-320