EconPapers    
Economics at your fingertips  
 

Heat transfer and entropy generation in a microchannel with longitudinal vortex generators using nanofluids

Amin Ebrahimi, Farhad Rikhtegar, Amin Sabaghan and Ehsan Roohi

Energy, 2016, vol. 101, issue C, 190-201

Abstract: Conjugated heat transfer and hydraulic performance for nanofluid flow in a rectangular microchannel heat sink with LVGs (longitudinal vortex generators) are numerically investigated using at different ranges of Reynolds numbers. Three-dimensional simulations are performed on a microchannel heated by a constant heat flux with a hydraulic diameter of 160 μm and six pairs of LVGs using a single-phase model. Coolants are selected to be nanofluids containing low volume-fractions (0.5%–3.0%) of Al2O3 or CuO nanoparticles with different particle sizes dispersed in pure water. The employed model is validated and compared by published experimental, and single-phase and two-phase numerical data for various geometries and nanoparticle sizes. The results demonstrate that heat transfer is enhanced by 2.29–30.63% and 9.44%–53.06% for water-Al2O3 and water-CuO nanofluids, respectively, in expense of increasing the pressure drop with respect to pure-water by 3.49%–16.85% and 6.5%–17.70%, respectively. We have also observed that the overall efficiency is improved by 2.55%–29.05% and 9.78%–50.64% for water-Al2O3 and water-CuO nanofluids, respectively. The results are also analyzed in terms of entropy generation, leading to the important conclusion that using nanofluids as the working fluid could reduce the irreversibility level in the rectangular microchannel heat sinks with LVGs. No exterma (minimums) is found for total entropy generation for the ranges of parameters studied.

Keywords: Microchannel; Longitudinal vortex generators; Nanofluids; Fluid flow; Heat transfer; Entropy generation (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (16)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544216300391
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:101:y:2016:i:c:p:190-201

DOI: 10.1016/j.energy.2016.01.102

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:101:y:2016:i:c:p:190-201