A study of double functions and load matching of a phosphoric acid fuel cell/heat-driven refrigerator hybrid system
Xiaohang Chen,
Yuan Wang,
Yingru Zhao and
Yinghui Zhou
Energy, 2016, vol. 101, issue C, 359-365
Abstract:
A generic model of the hybrid system consisting of a phosphoric acid fuel cell (PAFC) and a heat-driven refrigerator is originally established. On the basis of the models of PAFCs and three-heat-source refrigerators, the equivalent power output and efficiency of the hybrid system are obtained. The performance characteristic curves of the hybrid system are plotted through numerical calculation, showing that the performance of the hybrid system in the whole operating region is better than that of a single PAFC. The maximum equivalent power output density and the corresponding efficiency of the hybrid system are calculated. It is found that compared with the maximum power output density and the corresponding efficiency of a single PAFC, the maximum equivalent power output density of the hybrid system increases 938 W/m2 and the equivalent efficiency of the hybrid system at the maximum equivalent power output density increases 5.86%. The optimal ranges of the equivalent efficiency of the hybrid system and the current density of the PAFC are determined. The effects of the refrigeration temperature on the performance of the hybrid system are discussed in detail. Two different loads of the hybrid system are optimally matched.
Keywords: Hybrid system; Phosphoric acid fuel cell; Heat-driven refrigerator; Double function; Load matching (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054421630072X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:101:y:2016:i:c:p:359-365
DOI: 10.1016/j.energy.2016.02.029
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().