EconPapers    
Economics at your fingertips  
 

A simulation model for visitors’ thermal comfort at urban public squares using non-probabilistic binary-linear classifier through soft-computing methodologies

Shahab Kariminia, Shahaboddin Shamshirband (), Roslan Hashim, Ahmadreza Saberi, Dalibor Petković, Chandrabhushan Roy and Shervin Motamedi

Energy, 2016, vol. 101, issue C, 568-580

Abstract: Sustaining outdoor life in cities is decreasing because of the recent rapid urbanisation without considering climate-responsive urban design concepts. Such inadvertent climatic modifications at the indoor level have imposed considerable demand on the urban energy resources. It is important to provide comfortable ambient climate at open urban squares. Researchers need to predict the comfortable conditions at such outdoor squares. The main objective of this study is predict the visitors' outdoor comfort indices by using a developed computational model termed as SVM-WAVELET (Support Vector Machines combined with Discrete Wavelet Transform algorithm). For data collection, the field study was conducted in downtown Isfahan, Iran (51°41′ E, 32°37′ N) with hot and arid summers. Based on different environmental elements, four separate locations were monitored across two public squares. Meteorological data were measured simultaneously by surveying the visitors' thermal sensations. According to the subjects' thermal feeling and their characteristics, their level of comfort was estimated. Further, the adapted computational model was used to estimate the visitors’ thermal sensations in terms of thermal comfort indices. The SVM-WAVELET results indicate that R2 value for input parameters, including Thermal Sensation, PMW (The predicted mean vote), PET (physiologically equivalent temperature), SET (standard effective temperature) and Tmrt were estimated at 0.482, 0.943, 0.988, 0.969 and 0.840, respectively.

Keywords: Thermal comfort conditions; Outdoor spaces; Support vector machine; Wavelet algorithm; Microclimate (search for similar items in EconPapers)
Date: 2016
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544216300639
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:101:y:2016:i:c:p:568-580

DOI: 10.1016/j.energy.2016.02.021

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-31
Handle: RePEc:eee:energy:v:101:y:2016:i:c:p:568-580