EconPapers    
Economics at your fingertips  
 

Post-combustion CO2 capture with ammonia by vortex flow-based multistage spraying: Process intensification and performance characteristics

Bingtao Zhao, Yaxin Su and Guomin Cui

Energy, 2016, vol. 102, issue C, 106-117

Abstract: To improve the process and performance of CO2 capture with ammonia by chemical absorption, a vortex flow-based multistage spray reactor was designed to evaluate the enhancement effect for post-combustion CO2 capture with ammonia. The process intensification analysis based on flow patterns from a CFD (computational fluid dynamics) simulation indicated that the vortex flow presented multi-dimensional velocities including a V-shaped tangential velocity profile and non-uniform axial velocity profile, which resulted in enhancement of gas–liquid contact, mixing, mass transfer, and reaction compared to non-vortex flow. Furthermore, the CO2 capture characteristics were examined at varied operating parameters. It was found that the capture efficiency E increased with increasing ammonia concentration and liquid flow rate but decreased with increasing CO2 inlet concentration and gas flow rate. Meanwhile, the overall gas phase mass transfer coefficient Kga increased with increasing ammonia concentration, liquid flow rate, and gas flow rates but decreased with increasing CO2 inlet concentration. Within the measured range, the E and Kga varied from 72.05 to 86.72% and 0.31–0.49 × 10−3 kmol/m3 kPa s, respectively. Importantly, vortex flow presents relative enhancements of 7–15% in E and 18–33% in Kga compared with non-vortex flow depending on the operating parameters.

Keywords: Post-combustion CO2 capture; Ammonia; Vortex flow; Multistage spray; Process enhancement (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544216301074
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:102:y:2016:i:c:p:106-117

DOI: 10.1016/j.energy.2016.02.056

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:102:y:2016:i:c:p:106-117