Climate change and electricity demand in Brazil: A stochastic approach
Ian Trotter (),
Torjus Folsland Bolkesjø,
José Féres and
Lavinia Hollanda
Energy, 2016, vol. 102, issue C, 596-604
Abstract:
We present a framework for incorporating weather uncertainty into electricity demand forecasting when weather patterns cannot be assumed to be stable, such as in climate change scenarios. This is done by first calibrating an econometric model for electricity demand on historical data, and subsequently applying the model to a large number of simulated weather paths, together with projections for the remaining determinants. Simulated weather paths are generated based on output from a global circulation model, using a method that preserves the trend and annual seasonality of the first and second moments, as well as the spatial and serial correlations. The application of the framework is demonstrated by creating long-term, probabilistic electricity demand forecasts for Brazil for the period 2016–2100 that incorporates weather uncertainty for three climate change scenarios. All three scenarios indicate steady growth in annual average electricity demand until reaching a peak of approximately 1071–1200 TWh in 2060, then subsequently a decline, largely reflecting the trajectory of the population projections. The weather uncertainty in all scenarios is significant, with up to 400 TWh separating the 10th and the 90th percentiles, or approximately ±17% relative to the mean.
Keywords: Long-term load forecast; Electricity demand; Climate change (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (25)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544216301827
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:102:y:2016:i:c:p:596-604
DOI: 10.1016/j.energy.2016.02.120
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().