EconPapers    
Economics at your fingertips  
 

Energy consumption predicting model of VRV (Variable refrigerant volume) system in office buildings based on data mining

Deyin Zhao, Ming Zhong, Xu Zhang and Xing Su

Energy, 2016, vol. 102, issue C, 660-668

Abstract: Energy consumption prediction plays an important role in building design & retrofit, energy management system. In this paper, ECI (Energy consumption intensity) of VRV (Variable refrigerant volume) system in office buildings located in Shanghai, Nanjing and Changsha of East China are firstly investigated and analyzed statistically. The annual median value of ECI in the three cities is about 36 kWh/m2.Hourly energy consumption prediction model based on data mining (ie. ANN (Artificial Neural Network), SVM (Support vector regression) and ARIMA (Autoregressive integrated moving average) models) are subsequently discussed. During case study, three months' (ie. from July to September in 2013) energy consumption data of office building located in Shanghai are used to set up different predicting models. RMSE (Root mean square error), MSE (Mean square error) & MAPE (Mean absolute percentage error) are used to evaluate corresponding prediction accuracy. Results show that Predicting model based on ANN is better than the other two models'. The RMSE, MSE & MAPE of ANN model in training course are 0.0681, 0.0045, 0.1710, respectively. According to simulated results in paper, ANN and SVM models are recommended to do energy consumption predicting of VRV system in office buildings.

Keywords: Office building; Energy consumption prediction; VRV system; Data mining (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (19)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544216301967
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:102:y:2016:i:c:p:660-668

DOI: 10.1016/j.energy.2016.02.134

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:102:y:2016:i:c:p:660-668