EconPapers    
Economics at your fingertips  
 

Hollow carbon sphere/metal oxide nanocomposites anodes for lithium-ion batteries

K. Wenelska, A. Ottmann, P. Schneider, E. Thauer, R. Klingeler and E. Mijowska

Energy, 2016, vol. 103, issue C, 100-106

Abstract: HCS (Hollow carbon spheres) covered with metal oxide nanoparticles (SnO2 and MnO2, respectively) were successfully synthesized and investigated regarding their potential as anode materials for lithium-ion batteries. Raman spectroscopy shows a high degree of graphitization for the HCS host structure. The mesoporous nature of the nanocomposites is confirmed by Brunauer–Emmett–Teller analysis. For both metal oxides under study, the metal oxide functionalization of HCS yields a significant increase of electrochemical performance. The charge capacity of HCS/SnO2 is 370 mA hg−1 after 45 cycles (266 mA hg−1 in HCS/MnO2) which clearly exceeds the value of 188 mA hg−1 in pristine HCS. Remarkably, the data imply excellent long term cycling stability after 100 cycles in both cases. The results hence show that mesoporous HCS/metal oxide nanocomposites enable exploiting the potential of metal oxide anode materials in Lithium-ion batteries by providing a HCS host structure which is both conductive and stable enough to accommodate big volume change effects.

Keywords: Lithium-ion batteries; Metal oxides; Nanoparticle; Hollow carbon spheres; Electrochemical properties (search for similar items in EconPapers)
Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544216301141
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:103:y:2016:i:c:p:100-106

DOI: 10.1016/j.energy.2016.02.063

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:103:y:2016:i:c:p:100-106