Numerical analysis of a heat-generating, truncated conical porous bed in a fluid-filled enclosure
Aranyak Chakravarty,
Priyankan Datta,
Koushik Ghosh,
Swarnendu Sen and
Achintya Mukhopadhyay
Energy, 2016, vol. 106, issue C, 646-661
Abstract:
Analysis of natural convection in enclosures containing heat generating porous medium has important applications related to geothermal, chemical, thermal and nuclear energy such as in-vessel cooling of debris beds in nuclear reactors, cooling of coal stockpiles etc. The objective of the present numerical study is to characterise the pattern of fluid flow and energy transfer during steady laminar natural convective flow in a cylindrical enclosure with a centrally placed heat generating porous bed. Flow through porous region is modelled using Darcy–Brinkmann–Forchheimer model and local thermal equilibrium is assumed for the porous region. Analysis is carried out for a wide range of Rayleigh number (Ra), Darcy number (Da) and thermal conductivity ratio, as well as for different bed geometries. It is observed that in addition to Ra and Da, the bed geometry also plays a very important role in determining flow field and temperature distribution within the enclosure. Interestingly, a significant change is observed in energy transfer mode from the porous bed corresponding to specific values of bed permeability and bed heat generation rate. This is characterised in terms of Ra and Da. Further, it is observed that this change in energy transfer mode is highly dependent on Ra.
Keywords: Natural convection; Porous bed; Heat generating bed; Truncated cone (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544216303474
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:106:y:2016:i:c:p:646-661
DOI: 10.1016/j.energy.2016.03.103
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().