EconPapers    
Economics at your fingertips  
 

Batch anaerobic co-digestion of OFMSW (organic fraction of municipal solid waste), TWAS (thickened waste activated sludge) and RS (rice straw): Influence of TWAS and RS pretreatment and mixing ratio

Zaidun Naji Abudi, Zhiquan Hu, Na Sun, Bo Xiao, Nagham Rajaa, Cuixia Liu and Dabin Guo

Energy, 2016, vol. 107, issue C, 131-140

Abstract: The biochemical methane potential of co-digestion of OFMSW (organic fraction of municipal solid waste), TWAS (thickened waste activated sludge) (thermal and thermo-alkaline pretreated) and RS (rice straw) (NaOH and H2O2 pretreated) were investigated in this paper. The batch experiments were conducted at three different OFMSW/TWAS/RS (volume basis) ratios of 1:1.5:1.5, 1:0.5:0.5, and 3:0.5:0.5, respectively. In addition, to predict the biogas yield and evaluate the kinetic parameters, modified Gompertz model was introduced. A 3:0.5:0.5 ratio of OFMSW mixed with thermo-alkaline-treated TWAS and H2O2-treated RS produced the highest biogas production (558.5 L/kgVSadded) and the highest VS (volatile solids) removal efficiency (76.9%) due to the synergistic effect. The modified Gompertz model (R2: 0.868–0.998 and 0.910–0.999 for mono- and co-digestions, respectively) showed a good fit to the experimental results and the estimated parameters indicated that the pretreatments and co-digestion of substrates markedly improved the biogas production rate.

Keywords: Anaerobic co-digestion; OFMSW (organic fraction of municipal solid waste); Thermal and thermo-alkaline pretreatment; NaOH and H2O2 pretreatment; Kinetic study (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (21)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544216303942
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:107:y:2016:i:c:p:131-140

DOI: 10.1016/j.energy.2016.03.141

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:107:y:2016:i:c:p:131-140