Predicting the impact of heat exchanger fouling in power systems
Bilal Ahmed Qureshi and
Syed M. Zubair
Energy, 2016, vol. 107, issue C, 595-602
Abstract:
In this work, a prediction equation is proposed that determines performance parameters of fouled power systems as long as heat transfer in the two-phase region is dominant. Fouling was simulated by degrading the overall conductance. Dimensional analysis was used to reduce the problem to seven Pi groups. Since behavior found in endoreversible systems is often imitated by real systems, the endoreversible case was used for initial demonstration followed by a simulated Rankine cycle. Using an example problem, during degradation of the overall conductance, the observed parameters were found to behave logarithmically. Prediction was done by combining data under specified conditions for finite thermal capacitances. This type of model can offer benefit through saving both money and time by decreasing required number of experiments and/or simulations as well as in planning better cleaning schedules.
Keywords: Fouling; Cleaning schedule; Buckingham Pi; Rankine; Prediction (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544216304388
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:107:y:2016:i:c:p:595-602
DOI: 10.1016/j.energy.2016.04.032
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().