EconPapers    
Economics at your fingertips  
 

Thermodynamic approach and comparison of two-step and single step DME (dimethyl ether) syntheses with carbon dioxide utilization

Wei-Hsin Chen, Chih-Liang Hsu and Xiao-Dong Wang

Energy, 2016, vol. 109, issue C, 326-340

Abstract: DME (Dimethyl ether) synthesis from syngas with CO2 utilization through two-step and single step processes is analyzed thermodynamically. The influences of reaction temperature, H2/CO molar ratio, and CO2/CO molar ratio on CO and CO2 conversions, DME selectivity and yield, and thermal behavior are evaluated. Particular attention is paid to the comparison of the performance of DME synthesis between the two different methods. In the two-step method, the addition of CO2 suppresses the CO conversion during methanol synthesis. An increase in CO2/CO ratio decreases the CO2 conversion (negative effect), but increases the total consumption amount of CO2 (positive effect). At a given reaction temperature with H2/CO = 4, the maximum DME yield develops at CO2/CO = 1. In the single step method, over 98% of CO can be converted and the DME yield can be as high as 0.52 mol (mol CO)−1 at CO2/CO = 2. The comparison of the single step and two-step processes indicates that the maximum CO conversion, DME selectivity, and DME yield in the former are higher than those in the latter, whereas an opposite result in the maximum CO2 conversion is observed. These results reveal that the single step process has lower thermodynamic limitation and is a better option for DME synthesis. From CO2 utilization point of view, the operation with low temperature, high H2/CO ratio, and low CO2/CO ratio results in higher CO2 conversion, irrespective of two-step or single step DME synthesis.

Keywords: CO2 addition; DME (Dimethyl ether); DME selectivity and yield; Single step and two-step syntheses; Thermal behavior; Thermodynamic analysis (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544216305102
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:109:y:2016:i:c:p:326-340

DOI: 10.1016/j.energy.2016.04.097

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:109:y:2016:i:c:p:326-340