Experimental study on a closed-loop pulsating heat pipe (CLPHP) charged with water-based binary zeotropes and the corresponding pure fluids
Hua Han,
Xiaoyu Cui,
Yue Zhu,
Tianxiao Xu,
Yuan Sui and
Shende Sun
Energy, 2016, vol. 109, issue C, 724-736
Abstract:
Pulsating heat pipe (PHP) is a relatively new and promising addition to the family of passive two-phase energy transport devices. By charging with water-methanol, water-ethanol and water-acetone zeotropic mixtures at various volume mixing ratios, a vertical closed-loop PHP has been experimentally investigated with heat input ranged from 10 W to 100 W. It was found that because of the zeotropic properties in phase transition and the complex molecular interactions between the components, the PHPs charged with the mixtures were quite more complex than those with pure fluids. At small or medium filling ratios, most of the binary mixtures had better anti-dry-out performance than at least one of the pure fluids (even both) due to the phase-change-inhibition effect (PCIE) of zeotropic mixtures where the vaporization of the high boiling point component (water) will be suppressed by the higher pressure of its counterpart abundant in the vapor slugs. At large filling ratios and high heat input, the thermal performances of the PHP charged with mixtures were generally not as good as that with the pure water possibly due to the PCIE, the flow retardance caused by the resistance to additional mass transfer and the possible increase in dynamic viscosity of the mixtures.
Keywords: Oscillating heat pipe; Phase change; Heat transfer; Flow retardance; Zeotropic mixtures (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544216306788
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:109:y:2016:i:c:p:724-736
DOI: 10.1016/j.energy.2016.05.061
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().