EconPapers    
Economics at your fingertips  
 

Experimental and numerical investigation of a backside convective cooling mechanism on photovoltaic panels

S. Nižetić, F. Grubišić- Čabo, I. Marinić-Kragić and A.M. Papadopoulos

Energy, 2016, vol. 111, issue C, 211-225

Abstract: In this paper, two generic photovoltaic (PV) panels (poly-Si and mono-Si) were experimentally tested in typical Mediterranean climatic conditions. The focus of the applied experimental approach was to examine the effect of backside convective thermal profile and its impact on temperature distribution, i.e. on panel electrical efficiency. Therefore, a series of measurements was made in 2015, from April to July, as well as CFD modeling in order to obtain a detailed analysis of the possible working regimes. According to the obtained experimental and CFD results, the present design of typical PV panels have an unfavorable impact on PV panel electrical efficiency. Namely, typical contemporary panel designs lead to two typical backside convective air temperature profiles which have a direct impact on the effectiveness of natural cooling. As shown in the obtained measurements, the specific convective profiles at the backside of PV panels have a significant influence on the degradation rate of panel electrical efficiency in the estimated amount of 2.5% up to 4.5%. The results of the research discussed in this paper signal the need to provide a possible redesign of the backside surface in conventional PV panels, in order to increase their average efficiency (more efficient backside thermal dissipation).

Keywords: Photovoltaics; Renewable energy; CFD analysis; Experimental analysis; Energy efficiency; Thermodynamics (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544216307228
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:111:y:2016:i:c:p:211-225

DOI: 10.1016/j.energy.2016.05.103

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:111:y:2016:i:c:p:211-225