β-characterization by irreversibility analysis: A thermoeconomic diagnosis method
Alejandro Zaleta-Aguilar,
Abraham Olivares-Arriaga,
Sergio Cano-Andrade and
David A. Rodriguez-Alejandro
Energy, 2016, vol. 111, issue C, 850-858
Abstract:
This paper presents a reconciliation methodology for the diagnosis of energy systems. The methodology is based on the characterization of irreversibilities in the components of an energy system. These irreversibilities can be attributed to malfunctions or dysfunctions. The characterization of irreversibilities as presented here makes possible to reconcile the Actual Operating Condition (AOC) versus the Reference Operating Condition (ROC) of the energy system in a real-time manner. The diagnosis methodology introduces a parameter β, which represents the total exergy or useful work of a component in terms of its inlet and output streams at either design (full-load) or off-design (partial-load) conditions. The methodology is applied to the diagnosis of an actual Natural Gas Combined Cycle (NGCC) power plant. Data for the model is obtained directly from the plant by monitoring its performance at every time; thus, a real-time thermodynamic diagnosis for the system is obtained. Results show that the methodology presented here is able to detect and quantify the deviations on the performance of the NGCC power plant during its real-time operation. Based on the detection and quantification of these deviations, the user is able to make recommendations to schedule maintenance on the components where the irreversibilities are present.
Keywords: Thermocharacterization; Irreversibility analysis; Thermoeconomics; Diagnosis (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054421630785X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:111:y:2016:i:c:p:850-858
DOI: 10.1016/j.energy.2016.06.012
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().