Greener plug-in hybrid electric vehicles incorporating renewable energy and rapid system optimization
Xiaosong Hu,
Yuan Zou and
Yalian Yang
Energy, 2016, vol. 111, issue C, 971-980
Abstract:
It is imperative to explore the full carbon dioxide-saving potential for plug-in hybrid electric vehicles. This paper seeks to examine the role of renewable energy and powertrain optimization in minimizing daily carbon emissions of plug-in hybrid electric vehicles. A spectrum of influencing factors are investigated, including charging protocol, timing, on-road power management strategy, battery size, and carbon-emission intensity of the grid. A high-efficiency convex programming framework is harnessed to optimize a plug-in hybrid powertrain. Two originally important contributions evidently distinguish this work from existing efforts. First, diverse heuristic scenarios and concomitant weaknesses are elucidated, and the carbon reductions arising from renewable energy integration and the convex programming framework are quantified. The great importance of their synergy is accentuated, i.e., swiftly adapting charging/power management controls to wind intermittency. Second, battery health implication is explored for the optimal and heuristic scenarios, via a dynamic battery State-of-Health model.
Keywords: Plug-in hybrid electric vehicle; Component sizing; Energy management; Charging control; Optimization; Renewable energy (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (34)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544216308118
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:111:y:2016:i:c:p:971-980
DOI: 10.1016/j.energy.2016.06.037
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().