EconPapers    
Economics at your fingertips  
 

Investigation of CO2 hydrate formation conditions for determining the optimum CO2 storage rate and energy: Modeling and experimental study

Farzane Pivezhani, Hadi Roosta, Ali Dashti and S. Hossein Mazloumi

Energy, 2016, vol. 113, issue C, 215-226

Abstract: In this study, optimum conditions for CO2 hydrate formation are investigated in order to determine the maximum CO2 storage rate and optimum energy consumption. First, a wide range of new experiments are carried out by using three-blade, six-blade and anchor impellers. For each experiment, a mass transfer model and a semi-empirical equation are utilized and the amount of energy consumption is measured. Temperature, impeller speed, initial pressure and volume of water, surface tension and the diffusion coefficient of CO2 are considered as the factors that affect the kinetics of CO2 hydrate. Maximum energy savings is achieved with maximum hydrate formation rate. It is found that the impeller speed is the most effective factor here. Moreover, at a given impeller speed, the hydrate formation rate is four times greater than the three-blade impeller when a combination of six-blade and anchor impellers is used. In addition, the rate of hydrate formation becomes 2, 1.6 and 3 times greater by reducing the volume of water, increasing the temperature and initial pressure and increasing the concentration of surfactant up to its optimum concentration in such a way that the energy consumption reduces from 1.92 kWh to 0.08 kWh when these effective parameters are changed.

Keywords: CO2 hydrate; Hydrate formation kinetics; Mass transfer coefficient; Impeller; Energy consumption (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544216309677
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:113:y:2016:i:c:p:215-226

DOI: 10.1016/j.energy.2016.07.043

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:113:y:2016:i:c:p:215-226