Experimental and numerical investigation of core cooling of Li-ion cells using heat pipes
K. Shah,
C. McKee,
D. Chalise and
A. Jain
Energy, 2016, vol. 113, issue C, 852-860
Abstract:
While Li-ion cells offer excellent energy conversion and storage capabilities for multiple applications, including electric vehicles, heat removal from a Li-ion cell remains a serious technological challenge that directly limits performance, and poses serious safety concerns. Due to poor thermal conductivity of Li-ion cells, traditional cooling methods like air cooling on the cell surface do not effectively access and cool the core. This may lead to overheating of the cell core. This paper investigates the cooling of Li-ion cells using an annular channel through the axis of the cell. Air flow through this channel and heat pipe insertion are both shown to result in effective cooling. A temperature reduction of 18–20 °C in the cell core is observed in heat pipe experiments, depending on heat pipe size, for 1.62 W heat dissipation. Similar effect is observed when a thin metal rod is used instead of a heat pipe. Experimental measurements are close to finite-element simulation results. Experiments demonstrate that a heat pipe successfully prevents overheating in case of sudden increase in heat generation due to malfunction such as cell shorting. This paper illustrates fundamental thermal-electrochemical trade-offs, and facilitates the development of novel and effective cooling techniques for Li-ion cells.
Keywords: Lithium-ion cells; Thermal runaway; Convective cooling; Heat pipe; Thermal management (search for similar items in EconPapers)
Date: 2016
References: View complete reference list from CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544216310003
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:113:y:2016:i:c:p:852-860
DOI: 10.1016/j.energy.2016.07.076
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().