EconPapers    
Economics at your fingertips  
 

Combustion and emission performance of a split injection diesel engine in a double swirl combustion system

Xiangrong Li, Haobu Gao, Luming Zhao, Zheng Zhang, Xu He and Fushui Liu

Energy, 2016, vol. 114, issue C, 1135-1146

Abstract: The authors developed and tested a split injection strategy in a double swirl combustion system (DSCS). Different split injection strategies with different ratios of pilot injection fuel to total fuel mass (herein defined as “pilot injection/fuel mass ratios”) and dwell times were compared with an optimized single injection strategy in terms of the break specific fuel consumption (BSFC). The in-cylinder pressure, heat release rate and in-cylinder temperature were analyzed to explore the in-cylinder combustion process. The NOx emission was also measured. With the total fuel mass being 100 mg/cycle and excess air coefficient being 2 at 2100 r/min at a 5% pilot injection/fuel mass ratio and a 10 deg dwell time, the BSFC decreased by 2.7% compared with the single injection strategy. The NOx emission increased from 940 ppm to 1140 ppm. An ‘acceleration effect’ helped the DSCS when dwell time was short. A spray visualization experiment and numerical simulations were carried out to explain these phenomena. It is concluded that the split injection condition with a smaller pilot injection/fuel mass ratio and a shorter dwell time performed better than the single injection condition in terms of the thermo-atmosphere utilization, space utilization and acceleration effect.

Keywords: Diesel engine; Double swirl combustion system; Split injection; Single cylinder engine experiment; Spray visualization experiment; Numerical simulation (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544216312051
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:114:y:2016:i:c:p:1135-1146

DOI: 10.1016/j.energy.2016.08.092

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:114:y:2016:i:c:p:1135-1146