EconPapers    
Economics at your fingertips  
 

Calculation of solar irradiation prediction intervals combining volatility and kernel density estimates

Juan R. Trapero

Energy, 2016, vol. 114, issue C, 266-274

Abstract: In order to integrate solar energy into the grid it is important to predict the solar radiation accurately, where forecast errors can lead to significant costs. Recently, the increasing statistical approaches that cope with this problem is yielding a prolific literature. In general terms, the main research discussion is centred on selecting the “best” forecasting technique in accuracy terms. However, the need of the users of such forecasts require, apart from point forecasts, information about the variability of such forecast to compute prediction intervals. In this work, we will analyze kernel density estimation approaches, volatility forecasting models and combination of both of them in order to improve the prediction intervals performance. The results show that an optimal combination in terms of prediction interval statistical tests can achieve the desired confidence level with a lower average interval width. Data from a facility located in Spain are used to illustrate our methodology.

Keywords: Forecasting; Solar irradiation; Prediction intervals; Volatility; Kernel density estimation (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544216311008
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:114:y:2016:i:c:p:266-274

DOI: 10.1016/j.energy.2016.07.167

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:114:y:2016:i:c:p:266-274