Development of a combined reduced primary reference fuel-alcohols (methanol/ethanol/propanols/butanols/n-pentanol) mechanism for engine applications
Xinlei Liu,
Hu Wang,
Zunqing Zheng,
Jialin Liu,
Rolf D. Reitz and
Mingfa Yao
Energy, 2016, vol. 114, issue C, 542-558
Abstract:
A combined reduced primary reference fuel (PRF)-alcohols (methanol/ethanol/propanols/butanols/n-pentanol) combustion kinetic mechanism composed of 161 species and 622 reactions was developed for engine combustion simulations. The obtained reduced PRF-alcohols mechanism was constructed with a hierarchical structure. Minor adjustments were performed to ensure the predictive performance against experimental results. The reduced PRF-alcohols mechanism adequately predicted experimental ignition delays, laminar flame speeds, and species mole fraction profiles. New homogeneous charge compression ignition experiments fueled with 75% (mol.) n-propanol/25% n-heptane, 75% i-propanol/25% n-heptane, and 75% n-pentanol/25% n-heptane blends were also collected and served as further mechanism validations. By coupled with the toluene-polycyclic aromatic hydrocarbons sub-mechanism, the reduced PRF-alcohols mechanism was used for the three dimensional modeling studies to investigate the direct injection compression ignition (DICI) combustion fueled with diesel/alcohol blends at the 5% fuel oxygen content. Zero-dimensional modeling studies were also conducted. The modeling results indicated that in DICI combustion, it was the different physical mixing qualities incurred by the different fuel reactivity dominated the soot formation but not the different carbon chain chemical structures. The O atom of the fuel molecule was more efficient than the O2 molecule for the soot oxidation.
Keywords: PRF; Alcohols; Reduced mechanism; Propanol; Butanol; Pentanol (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544216311045
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:114:y:2016:i:c:p:542-558
DOI: 10.1016/j.energy.2016.08.001
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().