Three dimensional simulation of J-shaped Darrieus vertical axis wind turbine
Mahdi Zamani,
Saeed Nazari,
Sajad A. Moshizi and
Mohammad Javad Maghrebi
Energy, 2016, vol. 116, issue P1, 1243-1255
Abstract:
The present research aims to investigate the concept of J-shaped blade in a straight–bladed Darrieus type VAWT in terms of output torque and power by employing high-fidelity 3D numerical simulations. Theoretically, since the J-shaped blades can benefit from the lift and drag forces simultaneously, this combined forces help the turbine possess faster operation at low wind speeds, thereby resulting in the termination of self-starting problem and improving power coefficients, especially at low and moderate tip speed ratios. In this study, NACA0015 is served as the base airfoil and has been modified to generate the desired J-shape profile. The attained results indicate improvements on torque and power coefficients, more specifically in the first half of revolution namely 0° < θ < 180°. Additionally, the amplitude of power and torque oscillation in each revolution has been curtailed and shifted up. A chunk of these improvements can be attributed to the inherent geometry of J-shaped profile through which the generated vorticities are trapped inside the blade and released behind the rotor. Not only that, the volumetric representation of turbulent kinetic energy discloses that the wake region behind the J-shaped rotor is free from slow dissipation of vorticities and possesses much less turbulency.
Keywords: Darrieus vertical axis wind turbine; Self-starting ability; J-shaped blade; 3D simulations (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (21)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544216314529
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:116:y:2016:i:p1:p:1243-1255
DOI: 10.1016/j.energy.2016.10.031
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().