A framework for sensitivity analysis of data errors on home energy management system
Dae-Hyun Choi and
Le Xie
Energy, 2016, vol. 117, issue P1, 166-175
Abstract:
This paper investigates the impact of data errors on home energy management systems (HEMSs) that reduce energy cost and maintain comfort for residential consumers. In particular, we conduct a sensitivity analysis of HEMS subject to various types of input data such as the predicted energy consumption, the forecasted outdoor temperature, the consumers' comfort settings, static and dynamic operation constraints for home appliances, and the demand response (DR) signal. Using the perturbed Karush-Kuhn-Tucker (KKT) condition equations from the HEMS optimization formulation, we develop a linear sensitivity matrix to assess the impact of data on optimal solutions for: (1) electricity cost; (2) consumer's dissatisfaction cost; (3) the energy consumption for home appliances; and (4) the indoor temperature. The results of a simulation study using the developed sensitivity matrix provide HEMS operators with unique insight into factors that account for the relationships of HEMS operations to the change in the various data. Furthermore, these results can be used to provide insights for residential consumers and to evaluate the security risks of HEMS to cyber attacks through data manipulation.
Keywords: Home energy management system (HEMS); Energy consumption scheduling; Demand side management; Sensitivity analysis (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544216314967
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:117:y:2016:i:p1:p:166-175
DOI: 10.1016/j.energy.2016.10.062
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().