EconPapers    
Economics at your fingertips  
 

Advanced exergy analysis applied to the process of regasification of LNG (liquefied natural gas) integrated into an air separation process

Stefanie Tesch, Tatiana Morosuk and George Tsatsaronis

Energy, 2016, vol. 117, issue P2, 550-561

Abstract: Natural gas is one of the most important sources of energy, the demand for which increases continuously. The LNG (liquefied natural gas) market rises currently exponentially; many countries entered this market recently. Applying an efficient regasification process for LNG is now more important than in the past. At present, mainly regasification of LNG via direct or indirect heating is used for industrial applications. Regasification of LNG can also be combined with generation of electricity. Another possibility is the integration of the regasification into a processes requiring low temperatures. A new concept dealing with the integration of regasification of LNG into a cryogenic process of air separation has recently been developed at Technische Universität Berlin. This paper evaluates two options of integrating the regasification of LNG into an air separation system. Conventional and advanced exergy analyses are used in the evaluation.

Keywords: LNG; Regasification; Air separation; Advanced exergy analysis (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544216304376
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:117:y:2016:i:p2:p:550-561

DOI: 10.1016/j.energy.2016.04.031

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:117:y:2016:i:p2:p:550-561