Flexible free-standing ternary CoSnO3/graphene/carbon nanotubes composite papers as anodes for enhanced performance of lithium-ion batteries
Xiaojun Zhao,
Gang Wang,
Yixuan Zhou and
Hui Wang
Energy, 2017, vol. 118, issue C, 172-180
Abstract:
A facile strategy is designed for the fabrication of flexible and free-standing ternary CoSnO3/graphene/carbon nanotubes (CoSnO3/GN/CNTs) composite papers through a simple filtration, followed by annealing process. The CoSnO3/GN/CNTs composite papers with high flexibility and tailorability can be easily fabricated. The CoSn(OH)6 nanoparticles/graphene oxide/carbon nanotubes (CoSn(OH)6/GO/CNTs) composite papers obtained by a simple filtration method are transformed into CoSnO3/GN/CNTs composite papers after a thermal treatment process. In this unique composite structure, CoSnO3 nanoparticles (nanocubes and nanoboxes) are embedded homogenously into the 3D framework of graphene and carbon nanotubes, respectively, in which offers not only a 3D conductive network and a dual restriction on the aggregation of CoSnO3 nanoparticles, but also accommodates the large volume expansion of CoSnO3 nanoparticles. When used directly as binder- and conductive agent-free anodes for lithium-ion batteries, the CoSnO3/GN/CNTs composite papers exhibit superb electrochemical properties including extraordinary reversible capacities, superior rate capabilities and stable cycle performances compared to CoSnO3 nanoparticles and GN/CNTs paper, suggesting a new pathway for the rational engineering of anode materials.
Keywords: Free-standing; CoSnO3; Graphene/carbon nanotubes; Composite papers; Anodes; Lithium-ion batteries (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544216318230
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:118:y:2017:i:c:p:172-180
DOI: 10.1016/j.energy.2016.12.018
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().