EconPapers    
Economics at your fingertips  
 

Hydrothermal carbonization of medical wastes and lignocellulosic biomass for solid fuel production from lab-scale to pilot-scale

Yafei Shen, Shili Yu, Shun Ge, Xingming Chen, Xinlei Ge and Mindong Chen

Energy, 2017, vol. 118, issue C, 312-323

Abstract: An alternative way has been proposed for the PVC-containing medical wastes valorization by co-hydrothermal carbonization (HTC) with lignocellulosic biomass. The organic-Cl in PVC can be converted to the inorganic-Cl via hydrolysis, defunctionalization, recondensation, and aromatization in the HTC process. Followed by the washing process with the condensed water, the inorganic-Cl with high water-solubility could be removed from the solid products (i.e. hydrochar). Lignin as a biomass component can significantly improve the dechlorination efficiency of PVC in the HTC process. Here, the dechlorination performance of lignocellulosic components is given as the following order: lignin > cellulose > hemicellulose. In addition, lignin can adjust the particle sizes of solid products by inhibiting the agglomeration in the order of lignin > hemicellulose > cellulose. In the pilot-scale HTC process, the addition of woodchips improves the dechlorination efficiency of hospital wastes (HW). The hydrochar particles with low-chlorine content and higher heating value could be used as a clean coal-alternative fuel.

Keywords: Dechlorination; Hydrothermal carbonization (HTC); PVC; Lignocellulosic biomass; Solid fuels (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (23)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544216318539
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:118:y:2017:i:c:p:312-323

DOI: 10.1016/j.energy.2016.12.047

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:118:y:2017:i:c:p:312-323