Novel multi-step sorption-reaction energy storage cycles for air conditioning and temperature upgrading
Zisheng Lu,
Ruzhu Wang and
Larisa Gordeeva
Energy, 2017, vol. 118, issue C, 464-472
Abstract:
Novel multi-step sorption-reaction cycles for air conditioning (cooling, heating) and temperature upgrading are studied. The multi-step sorption-reaction cycle utilizes heat from several processes, such as absorption, dilution, crystallization reaction and thermo-chemical reaction. In the multi-step sorption-reaction single stage solar cooling cycle, the cold storage density can reach the high value of 1.24 kWh/kg. In the multi-step sorption-reaction double stage solar cooling cycle, the 75 °C heat source can drive the cycle to produce cooling effect. In multi-step sorption-reaction heating cycle, the storage density can be improved to the level of 1252 kWh/m3 of solution. In the multi-step sorption-reaction single stage temperature upgrading cycle, the temperature can be improved from 55 °C to 105 °C, while it can be improved from 70 °C to 130 °C in the multi-step sorption-reaction double stage temperature upgrading cycle.
Keywords: Multi-step sorption-reaction; Energy storage; Temperature upgrading; Cooling; Heating (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544216314323
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:118:y:2017:i:c:p:464-472
DOI: 10.1016/j.energy.2016.10.011
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().