EconPapers    
Economics at your fingertips  
 

Novel grey prediction model with nonlinear optimized time response method for forecasting of electricity consumption in China

Ning Xu, Yaoguo Dang and Yande Gong

Energy, 2017, vol. 118, issue C, 473-480

Abstract: Forecasting of electricity energy consumption (EEC) has been always playing a vital role in China's power system management, and requires promising prediction techniques. This paper proposed an optimized hybrid GM(1,1) model to improve prediction accuracy of EEC in short term. GM(1,1) model, in spite of successful employing in various fields, sometimes gives rise to inaccurate solution in practical applications. Time response function (TRF) is an important factor deeply influencing modeling precision. Aiming to enhance forecasting performance, this paper proposed a novel grey model with optimal time response function, referred to as IRGM(1,1) model. As of unknown variables in TRF, a nonlinear optimization method, based on particle swarm algorithm, is constructed to obtain optimal values, for shrinking simulation errors and improving adaptability to characteristics of raw data. The forecasting performance has been confirmed by electricity consumption data of China, comparing with three alternative grey models. Application demonstrates that the proposed method can significantly promote modeling accuracy.

Keywords: Grey prediction model; Particle swarm optimization; Initial value; Electricity consumption (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (37)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544216314244
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:118:y:2017:i:c:p:473-480

DOI: 10.1016/j.energy.2016.10.003

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:118:y:2017:i:c:p:473-480