EconPapers    
Economics at your fingertips  
 

Energy saving potential in humidification-dehumidification desalination system

C. Muthusamy and K. Srithar

Energy, 2017, vol. 118, issue C, 729-741

Abstract: Humidification dehumidification desalination (HDH) system is viewed as an auspicious technique for medium level investment and productivity. The objective of this work is to enhance the productivity with the saving of input power in a modified HDH system by various changes in its components. Inserts like short length taper twisted tape; internally finned cut out conical turbulator and half perforated circular inserts with various orientations and three different pitch ratios (PR) are used in the air heater. Two types of packing materials (Gunny bag and saw dust) are employed in humidifier section and two different dehumidifier are tested to choose the good one and it is further integrated with spring inserts of different PR to enhance its performance. The best combination is identified when the air heater equipped with divergent twisted tape of PR 3, humidifier furnished with gunny bag and dehumidifier fixed with spring insert of PR 3. Higher productivity of 0.8 kg/h with the reduction in salinity (3.2 mg/l of chloride content) attained with 40% saving of input power in the modified HDH desalination system. A noticeable saving in energy with significant development in energy and exergy efficiency is observed. The economic analysis is also carried out.

Keywords: Humidification-dehumidification desalination; Twisted tape; Conical insert; Circular insert; Energy analysis; Exergy analysis (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544216315432
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:118:y:2017:i:c:p:729-741

DOI: 10.1016/j.energy.2016.10.098

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:118:y:2017:i:c:p:729-741