Profit allocation analysis among the distributed energy network participants based on Game-theory
Qiong Wu,
Hongbo Ren,
Weijun Gao,
Jianxing Ren and
Changshi Lao
Energy, 2017, vol. 118, issue C, 783-794
Abstract:
To overcome the supply-demand imbalance problem within a conventional distributed energy system, the distributed energy network (DEN) based on electricity and heat interchanges is proposed. With rational design and operation, the DEN may achieve satisfied economic performance compared with the situation without energy interchange. However, the maximum of overall economic benefits does not necessarily lead to satisfied economic performance for each consumer. Therefore, to promote the consumers' participation in the DEN, an effective and fair allocation mechanism for the additional profit is necessary. In this study, firstly, a mixed-integer linear programming (MILP) model is proposed to deal with the optimal technique selection, lay-out of the energy transmission line and running strategy of the DEN. Then, a mathematical model for fair benefit allocation amongst the participants is presented based on the core method of the cooperative Game-theory. As an illustrative example, three buildings located in Tokyo, Japan have been selected for analysis. According to the simulation results, total annual cost is reduced by 14.5% thanks to the energy interchange within the DEN. Moreover, fair profit allocation mechanism is determined by employing the core method. In this way, a win-win solution is achieved for both group interests and individual interests.
Keywords: Distributed energy network; MILP; Core; Game-theory; Profit allocation (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (24)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544216315638
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:118:y:2017:i:c:p:783-794
DOI: 10.1016/j.energy.2016.10.117
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().