Nitrogen and sulfur co-doped porous carbon – is an efficient electrocatalyst as platinum or a hoax for oxygen reduction reaction in acidic environment PEM fuel cell?
Madhumita Sahoo and
S. Ramaprabhu
Energy, 2017, vol. 119, issue C, 1075-1083
Abstract:
Non-precious, heteroatom doped carbon is reported to replace commercial Pt/C in both alkaline and acidic half-cell rotating disc electrode study; however the real world full cell measurements with the metal-free electrocatalysts overcoming the practical troubles in acidic environment proton exchange membrane fuel cell (PEMFC) are almost negligible to confirm the claim. Nitrogen and sulfur co-doped porous carbon (DPC) was synthesized in a one step, high yield process from single source ionic liquid precursor using eutectic salt as porogens to achieve porosity. Structural characterization confirms 7.03% nitrogen and 1.68% sulfur doping into the high surface area, porous carbon structure. As the cathode oxygen reduction reaction (ORR) catalyst, metal-free DPC and Pt nanoparticles decorated DPC (Pt/DPC) shows stable and high exchange current density by four electron transfer pathway in acidic half–cell liquid environment due to the synergistic effect of nitrogen and sulfur doping and porous nature of DPC. In an actual solid state full cell measurement, Pt/DPC shows higher performance comparable to commercial Pt/C; however DPC failed to reciprocate the half-cell performance due to blockage of active sites in the membrane electrode assembly fabrication process.
Keywords: Nitrogen and sulfur co-doped porous carbon; Oxygen reduction reaction; Non-metal cathode catalyst; Proton exchange membrane fuel cell; Rotating disk electrode study; Polarization plot (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544216316954
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:119:y:2017:i:c:p:1075-1083
DOI: 10.1016/j.energy.2016.11.066
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().