Economics at your fingertips  

Steam gasification of a thermally pretreated high lignin corn stover simultaneous saccharification and fermentation digester residue

Daniel T. Howe, Danny Taasevigen, Manuel Garcia-Perez, Armando G. McDonald, Guosheng Li and Michael Wolcott

Energy, 2017, vol. 119, issue C, 400-407

Abstract: Efficient conversion of all components in lignocellulosic biomass is essential to realizing economic feasibility of biorefineries. However, lignin cannot be fermented using biochemical routes. Furthermore, high lignin and high ash residues from simultaneous saccharification and fermentation (SSF) is difficult to thermochemically process due to feed line plugging and bed agglomeration. In this study a corn stover SSF digester residue was thermally pretreated at 300 °C for 22.5 min and gasified in a fluidized bed gasifier to study the effect of thermal pretreatment on its processing behavior. Untreated, pelletized SSF residue was gasified at the same conditions to establish the baseline processing behavior. Results indicate the thermal pretreatment process removes a substantial portion of the polar and non-polar extractives, with a resultant increase in the concentration of lignin, cellulose, and ash. Feed line plugging was not observed, although bed agglomeration occurred at similar rates for both feedstocks, suggesting that overall ash content is the most important factor affecting bed agglomeration. Benzene, phenol, and polyaromatic hydrocarbons in the tar were present at higher concentrations in the treated material, with higher tar loading in the product gas. Total product gas generation is lower for the treated material, although overall gas composition does not change.

Keywords: Thermochemical conversions; Gasification; Lignin; Integrated biorefinery; Biofuels; Bioenergy (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations View citations in EconPapers (1) Track citations by RSS feed

Downloads: (external link)
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Dana Niculescu ().

Page updated 2018-05-05
Handle: RePEc:eee:energy:v:119:y:2017:i:c:p:400-407