EconPapers    
Economics at your fingertips  
 

A hybrid forecasting model based on date-framework strategy and improved feature selection technology for short-term load forecasting

Ping Jiang, Feng Liu and Yiliao Song

Energy, 2017, vol. 119, issue C, 694-709

Abstract: The ultimate issue in electricity loads modelling is to improve forecasting accuracy as well as guarantee a robust prediction result, which will save considerable manual labor material resources and economic consumption. For addressing this challenge, many researchers are committed to investigating highly accurate forecasting models, and feature selection (FS) technologies are considered as a powerful tool to improve performance of models in many literature. However, common FS technologies applied for Short-term load forecasting (STLF) ignore to select date information of the observed series as feature candidates and pay less attention to reduction rates of feature candidates, which will result in loss of date information and redundancy of features. Both drawbacks provide a significant roadblock for improving forecasting accuracy. Aiming to overcome both drawbacks and develop an effective model for STLF, this paper successfully investigates the date-framework strategy (DFS) to construct the pool of features and develops an FS technology, genetic algorithm binary improved cuckoo search (GABICS), to search a solution with the lowest reduction rate. Assigning the extreme learning machine (ELM) to be the forecast, GABICS-DFS-ELM not only obtains a minimum and effective subset of features but also has a satisfactory forecasting result with high accuracy and robustness.

Keywords: Electricity loads forecasting; Date-framework strategy; Feature selection; Minimum subset of features; Hybrid model (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (29)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544216316395
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:119:y:2017:i:c:p:694-709

DOI: 10.1016/j.energy.2016.11.034

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:119:y:2017:i:c:p:694-709