EconPapers    
Economics at your fingertips  
 

The physical modelling and aerodynamics of turbulent flows around horizontal axis wind turbines

Sherwan A. Abdulqadir, Hector Iacovides and Adel Nasser

Energy, 2017, vol. 119, issue C, 767-799

Abstract: This paper aims to assess the reliability of turbulence models in predicting the flow fields around the horizontal axis wind turbine (HAWT) rotor blades and also to improve our understanding of the aerodynamics of the flow field around the blades. The simulations are validated against data from the NREL/NASA Phase VI wind turbine experiments. The simulations encompass the use of twelve turbulence models. The numerical procedure is based on the finite-volume discretization of the 3D unsteady Reynolds-Averaged Navier-Stokes equations. The resulting simulations are compared with the full range of experimental data available for this case.

Keywords: Computational fluid dynamics; Wind turbine aerodynamics; Unsteady RANS; Turbulence modelling (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544216316656
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:119:y:2017:i:c:p:767-799

DOI: 10.1016/j.energy.2016.11.060

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:119:y:2017:i:c:p:767-799