Combustion, performance, and selective catalytic reduction of NOx for a diesel engine operated with combined tri fuel (H2, CH4, and conventional diesel)
Ahmad M. Abu-Jrai,
Ala'a H. Al-Muhtaseb and
Ahmad O. Hasan
Energy, 2017, vol. 119, issue C, 901-910
Abstract:
In this study, the effect of tri fuel (ULSD, H2, and CH4) operation under real exhaust gas conditions with different gaseous fuel compositions on the combustion characteristics, engine emissions, and selective catalytic reduction (SCR) after treatment was examined at low, medium, and high engine loads. Pt/Al2O3-SCR reactor was used and operated at different exhaust gas temperatures. Results revealed that at low load, the two gaseous fuels (H2 and CH4) have the same trend on combustion proccess, where both reduce the in-cylinder pressure and rate of heat release. At the high engine load there was a considerable influence appeared as an increase of the premixed combustion phase and a significant decrease of the total combustion duration. In terms of emissions, it was observed that at high engine load, fuels with high CH4 content tend to reduce NOx formation, whereas, fuels with high H2 content tend to reduce PM formation, moreover, combustion of tri fuel with 50:50 fuel mixture resulted in lower BSFC compared to the other ratios and hence, the best engine efficiency. The hydrocarbon-SCR catalyst has shown satisfactory performance in NOx reduction under real diesel exhaust gas in a temperature window of 180–280 °C for all engine loads.
Keywords: Tri fuel; Diesel engine; Combustion characteristics; Emissions; Selective catalytic reduction; NOx (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544216316553
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:119:y:2017:i:c:p:901-910
DOI: 10.1016/j.energy.2016.11.050
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().