Simulation of an integrated hybrid desiccant vapor-compression cooling system
William M. Worek and
Moon Chung-Ju
Energy, 1986, vol. 11, issue 10, 1005-1021
Abstract:
The performance of a desiccant, integrated, hybrid, vapor-compression cooling system is modeled numerically. The concept of hybrid cooling investigated in this paper utilizes the waste heat rejected from a vapor-compression cycle to activate a desiccant dehumidification cycle. The hybrid system consists of 4 major components: a compressor, an evaporator and 2 desiccant, integrated condensers/dehumidifiers. The equations governing the transport of heat and mass in the desiccant, integrated condenser/dehumidifiers are formulated considering air as the working fluid in the process stream and a refrigerant stream, which is cooled from superheated vapor to subcooled liquid, as the heat source during desorption; a water stream is used to remove the heat generated during adsorption. The governing equations are nondimensionalized and solved for both sorption processes using an explicit finite-difference scheme. The performance of a first generation prototype desiccant, integrated, hybrid, vapor-compression cooling system is then evaluated at ARI conditions.
Date: 1986
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0360544286900319
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:11:y:1986:i:10:p:1005-1021
DOI: 10.1016/0360-5442(86)90031-9
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().