EconPapers    
Economics at your fingertips  
 

District heating systems based on low-carbon energy technologies in Mediterranean areas

Jesús Lizana, Carlos Ortiz, Víctor M. Soltero and Ricardo Chacartegui

Energy, 2017, vol. 120, issue C, 397-416

Abstract: Heating and cooling are responsible for 70% of energy consumption in European buildings, with renewables covering only 18%. To reduce emissions in the building sector, district heating based on low-carbon energy is identified as a key technology for the transition to a low-carbon economy. However, currently only 16% of thermal district networks are based on biomass, and around 3.2% on solar. This paper analyses the application of solar and biomass district heating systems in the low-to-moderate population density areas of the Mediterranean. These areas are characterised by high solar and biomass availability, and lack of space restrictions, along with particular challenges for implementation. A methodology for viability analysis and optimised integration is presented. The methodology is applied to a case study in the south of Spain. The results show that with a linear heat density greater than 1.5 MWh/m, there could be viability with internal rates of return higher than 7.4 and 9.8%, and payback period below 13 and 10 years, for solar and biomass systems respectively. The use of seasonal thermal energy storage allows the solar fraction to be increased from 55 to 75%. Sizing and design strategies for their viable implementation in Mediterranean areas are extrapolated from the analyses.

Keywords: District heating; Solar energy; Biomass; Underground thermal energy storage; Linear heat density; Mediterranean climate (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (27)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544216317340
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:120:y:2017:i:c:p:397-416

DOI: 10.1016/j.energy.2016.11.096

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:120:y:2017:i:c:p:397-416