EconPapers    
Economics at your fingertips  
 

Heat integration of methanol steam reformer with a high-temperature polymeric electrolyte membrane fuel cell

P. Ribeirinha, I. Alves, F. Vidal Vázquez, G. Schuller, M. Boaventura and A. Mendes

Energy, 2017, vol. 120, issue C, 468-477

Abstract: A fuel cell is an exothermic device that wastes ca. 50% of the input chemical energy while methanol steam-reforming (MSR) reaction is endothermic. The integration of a low temperature methanol steam-reforming cell (MSR-C) with a high temperature polymer electrolyte membrane fuel cell (HT-PEMFC) in a combined stack arrangement allows the thermal integration of both reactors. A novel bipolar plate of poly(p-phenylene sulfide) (PPS) featuring the fuel cell flow field in one side and the reformer flow field in the other was designed, built and assessed. For the first time are reported high current densities (>0.5 A cm−2) with the integrated system running at 453 K. The system was also ran for more than 100 h at 453 K, at 0.3 A cm−2, with a methanol conversion of >90%. It was observed some degradation of the membrane electrode assembly (MEA) due to the continuous presence of methanol in the reformate stream. Electrochemical impedance spectroscopy (EIS) analyses revealed an overall increase of the resistances. The self-thermal sustainability of the combined device was only reached for >0.75 A cm−2 due to the poor thermal insulation of the combined reactor.

Keywords: Methanol steam reforming; HT-PEMFC; Integration; H2 production (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (16)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544216317406
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:120:y:2017:i:c:p:468-477

DOI: 10.1016/j.energy.2016.11.101

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:120:y:2017:i:c:p:468-477