Analysis and comparison of solar-heat driven Stirling, Brayton and Rankine cycles for space power generation
Claudia Toro and
Noam Lior
Energy, 2017, vol. 120, issue C, 549-564
Abstract:
This paper presents an analysis of solar-heat driven Brayton, Rankine and Stirling cycles operating in space with different working fluids. Generation of power in space for terrestrial use can represent a great future opportunity: the low-temperature of space (∼3 K), allows the attainment of very high efficiency even with low-temperature heat inputs, and the solar energy input is higher in space than on earth. This paper shows a comparative analysis of advanced Brayton, Rankine and Stirling cycles to improve the understanding of the optimal trade-off between high efficiency and the smallest needed heat rejection area. The effect of the main cycles' operational parameters and plant layouts on efficiency and power to radiator area ratio have been analyzed. The thermal efficiency of regenerative-reheated-intercooled Brayton cycle was found to be the best among the investigated configurations. The power to radiator area ratio was found to increase with the introduction of reheating for both the Rankine and Brayton cycles. Stirling cycles efficiencies are lower than those obtained by the Brayton and Rankine cycles but with values of power to radiator area ratio equal to about half of those obtained by Brayton cycles but much higher than those obtained by the Rankine cycles.
Keywords: Space power generation; Space thermal power; Space dynamic power; Thermal cycle; Brayton cycles; Rankine cycles; Stirling cycles (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (17)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544216317431
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:120:y:2017:i:c:p:549-564
DOI: 10.1016/j.energy.2016.11.104
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().